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Dedicated to Professor Rudolf Zahradnik on the occasion of his 70th birthday. Many scientists
generation owe a lot to Professor Rudolf Zahradnik. For us he is and will remain always an exan
a curious human being, who devoted his life to knowledge and science and who's scientific achie
are admired by lots of his followers all over the world. We are also indebted to him for a unique fr
and scientific climate of our contacts. Last but not least we would like to stress also his exce
gualities as a citizen. Thanks to such people as Professor Zahradnik, we in Poland were always s
the truth will win in his country. We are really happy that this his and our dream came true.

Smoothing techniques for global optimization in search for the most stable structures (clust
conformers) have been a novel possibility for the last decade. The techniques turned out to be
to a variety of fundamental laws: Fick’s diffusion equation, time-dependent and time-indepe
Schrodinger equations, Smoluchowski dynamics equation, Bloch equation of canonical en:
evolution with temperature, Gibbs free-energy principle. The progress indicator of global opti
tion in those methods takes different physical meanings: time, imaginary time, Planck const:
the inverse absolute temperature. Despite this large spectrum of physical phenomena, the r
global optimization procedures have a remarkable common feature. In the case of the Gauss
satz for the wave function or density distribution, the underlying differential equations of motio
the Gaussian position and width are similar for all these phenomena. In all techniques the s
potential energy function plays a central role rather than the potential energy function itsel
smoothed potential results from a Gaussian convolution or filtering out high frequency Fourier
ponents of the original potential energy function. During the minimization, the Gaussian po
moves according to the negative gradient of the smoothed potential energy function. The Ge
width is position dependent through the curvature of the potential energy function, and evolv
cording to the following rule. For sufficiently positive curvatures (close to minima of the smoc
potential) the width decreases, thus leading to a smoothed potential approaching the original p
energy function, while for negative curvatures (close to maxima) the width increases leading
ually to the disappearance of humps of the original potential energy function. This allows for
ing barriers separating the energy basins. Some methods result in an additional term, which in
the width, when the potential becomes flat. This may be described as a feature allowing hunt
distant minima.

Key words: Global optimization; Energy minimum; Stable structure; Fick’s diffusion equati
Schrodinger equation; Bloch equation; Gibbs free-energy principle.
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Practically any attempt to make a scientific or commercial domain more quantit
leads to a problem of the optimal soluti@ng.a position or/and value of the absolu
minimum of a function. Generally, finding optimal solution by a method begins
defining a starting point in the corresponding space of variables. However, this
creates a problem that one then obtairecally optimal solution,i.e. only that one,
which is accessible from a particular starting point. Nothing indicates where to s
for the global optimal solutions.e. the global minimum of a function. The problem
not solvable in general. However, one finds important and urgent to reach the gl
optimal or even suboptimal solution in computer science, physics, chemistry, bic
technology, economics, social scienas, In these cases the problem does not nee
be solved generally. It may be, that the task is solvable only for some useful cl:
functions, or (more likely) the methods to be elaborated will assure a significar
crease of the success rate even in finding suboptimal solutions.

In chemistry one finds at least two domains where this is of prime importance.
is the search for the most stable conformation of a flexible molecule, and secon
most stable configuration of an ensemble of atoms or molecules. In the last ca
find the problem of the most stable isomer, the most stable products of chemica
tions and the most stable supramolecular structure. In the present state of gt
chemistry this question is in a large part ignored. How can it be that we are so sL
ful in the application of the quantum chemistry tools to chemical problems? Wel
answer lies in the fact that molecules most treated so far in quantum chemistry |
low number of conformers (note, that we always prefer small or rigid molecules fo
computers). Note also, that calculations for a large and flexible molecule are perfi
almost exclusively for a particular geometry, most often the X-ray geometry, be
otherwise one is confronted with the difficulty described above.

Is this difficulty serious? Let us take a polypeptide as an example. Approxil
stable conformations of the backbone of a dipeptide (we ignore complication cc
from the side-chain conformations) can be found from the so called Ramacha
map, which leads to about 10 different stable backbone conformations. This m
that a rough estimation of the number of stable conformers of an oligopeptide
posed ofN + 1 amino acids is of the order of M.Owhich is an astronomical numbe
even for a relatively small molecule as compared to proteins (in the latter case, sé
amino acids). An important class of proteins — enzymes function in nature only
specific conformation or a set of closely related conformations (native struct
Therefore, for such a case it is clear, that one has to determine somehow a way
those conformations among plethora of others. There are only a few things that
in such a formidable task. The first is that apparently it is not necessary to consid
molecular structure in the atomic representation, and the concept of pseudoato
even pseudopeptides still preserving reasonable characteristics of the amiig, a
may be used. The second one is that it turns out that for enzymes the energy-hy
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face structure has a hierarchical feature. there is a kind of a funnel effect biasin
the search towards the global minimum. The reason for the funnel effect may b
for those proteins that fold easily to the native structure, the global minimum ene
considerably lower than that of other conformatiénshus facilitating the funnel effect
Despite these advantages the problem seems to be extremely severe not o
enzymes, but also for molecules of a quite modest size. Nature however finds sor
its way to the native conformation, although it has to be admitted that it take!
seconds or even minutes sometimes, which is a large amount of time.

During the last decade or so a new idea of the global optimization has effer
and has been later elaborated in a number of apprdath&he key word in these
methods is smoothing or coarse-graining of the original potential energy hype
face®. The deformed hypersurface supports much fewer minima, thus being mucl
pler and easier to operate during the global minimization.

In the present paper some general aspects of the global minimization will be str
Global minimization and smoothing are closely related to some of basic equatic
physics: Fick’s diffusion equation, time dependent and time independent Schréc
equations, Bloch equation of canonical ensemble dependence on temperature,
free-energy equation, Smoluchowski dynamics. Some of the main features unde
the mechanism of this relation may be revealed, when one uses the Gaussian .
i.e.when one approximates the ensemble distributions or the wave functions by a
Gaussian function characterized by a position and a width. For the sake of simplic
formulas of the present paper will be written for a one-dimensional poteniéé will
assume tha¥ supports such a large number of minima, that no trivial search fol
global minimum position is likely to be successful.

There is an indicatich that the global optimization schemes that come out fr
these equations are all of the same kind as if nature applied a quite robust met
find the most stable structure. The details of the method change from sche
scheme, but the essence seems to remain the same.

FUNDAMENTAL EQUATIONS

Fick’s Diffusion Equation

Let us denote the function to be minimized W), and assume that the function
given by an appropriate analytical formula. Theomain (usually multidimensional,
may be divided into non-overlapping basins of attraction, each basin associated
minimum ofV. A basin is an open set of all those points, which when used as st:
points of a steepest-descent minimization procedure, lead to the same minimu
attractor). Thus, a basin is the same as a cell in Fukui’s formulation of reactiof?.ps
Imagine now that one addsW() its second derivative”’ multiplied byt/N, with t > 0 andN
a large natural number. This operation rises the new function (with respetifdo
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thosex, for which V"' > 0, lowers the new function for with V"' < 0 and leaves the
value of the function unchanged ferwith V'' = 0. In particular, all minima will be
pushed up, all maxima will be lowered. This operation destabilizes all basins and ¢
ually some of the basins may disappear. It has been Shioatnat a giver, when this

operation is iteratively repeat@&ttimes and\ - oo, one gets fronV another function,

W(x,t), which for differentiable/ reads as

W(xt) = T()V(X) D
with the operatoil
_ 0920
T(t) = exp% ang . 2

The operatoil has the following eigenfunctions

T(t) sinwx = a(t,w) sin wx (3
T(t) coswx = a(t,w) coswx , 4

with the eigenvaluea(t,w)
a(t,w) = exp (4P . )

Let us consider a Fourier decompositionVofAs one can see from Edp)(W(xt = 0) =
V(x). However, as seen from Eg®) @nd 6) fort > 0 theT operator damps all Fourie
amplitudes exponentially with and more interestingly this damping is especially p
nounced for high frequency components. Thus, the actidr{tof 0) is smoothing or
coarse-graining the original functiow i.e. filtering out high frequency component:
The smoothing is larger for largeand for largero. Admitting even non-continuoug
one may shofthat the corresponding/ satisfies the diffusion equation with the pa
ametert playing the role ofime

W oW
»e o ©)
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Thus,W changes witht (time) as if it were a concentration or temperature distribut
in a homogeneous body, with the starting distribution=ad equal tov(x).

The functionW that satisfies the diffusion equation can be expressed as the Fo
Poisson integral,e. convolution ofV with a Gaussian function

Wko.t) = V1) = (478) Y2 [ dxV(X) exp F(x - x)2 141 . @)

In ref8one can findVOderived forV being a polynomial, a Gaussian or Lorentz fur
tion as well as the so called standard test functions for global optimization met
Note, that as — 0 the normalized Gaussian function tends to the Dirac delta func
O(X — %g) and therefore fot = 0,

o=V . ®)

After substitutingx, — X the functionlVI{x,t) = W(x;t) is used in the global minimiza
tion in the following way (reversing procedgyeFirst, one chooses a large valug ot
and calculate®V(xt,,,,). This function (for non-degenerate global minima) will be cc
vex for sufficiently largd,,,, By using a steepest descent minimization procedure
obtains its single minimum starting from any point of space, thus making the proc
independent of the starting point, which is a remarkable feature. This single mini
may serve as the starting point for a minimization of Mgt — &) with & very
small. Thus a new minimum is located. This minimum is used then as the starting
in the minimization ofM(Xt,,,,— 20), etc Finally, one finds a minimum of the functio
W(x,0) =V(x). This minimum in many cas&3®%is the global minimum oY¥. In other
words one uses the progress indicator t changing frome to O and solves the dif:
ferential equation

d
e Ve ©

%

For the reason that will become clear later on, let us write that the charge
(a quantity related to the Gaussian width) with the progress indicator is trivial ir
diffusion equation method:tda = 1.

Schrodinger Equation

The Schrodinger equation may be used to find the global minimum of a potenti
ergy function. This can be done in two ways. Both are based on the known prope
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the time-independent Schrodinger equation that the ground-state wave function L
has its single maximum close to the global minimum of the potential eférg§° In
this paragraph we would like to concentrate on the so called imaginary time Schro
equation technique designed by Straub and cowdfkés finding the global mini-
mum.

One replaces the time varialilén the time dependent Schrodinger equatiort by
it/ and then treats as a real variabld,e. as ift were imaginary. The new equatio
describes the evolution of a functigtx,T = 0), as the time tends to infinity

o(x,T) = exp (HT1) @(x,0) , 10

whereH is the system Hamiltonian. By expanding the starting fungi{r®) into a set
of the eigenfunctiom, of H one has

@(x.T) = exp (FoT) 2, @, Ur(X) exp [-&, - Eg)T] . (19

SinceE, - E, = 0, for sufficiently larget the dominant contribution t¢ comes from
the ground statd,e, u, function corresponding to the enerBy. This function hope-
fully has its maximum close to the global minimum of the potential energy. The
behind the method is to start from a localized trial function and then follow its ¢
ution, whent — . The resulting position of the function will hopefully indicate tl
global minimum ofVv.

Now, one may choose as the wave function a normalized Gaussian function

P(x1) = (2n0%) " exp {-[(x - x)/20]%} (12

where the widtho and the positiorx, depend ot and [@*@dx = 1. Fort = O one
chooses some starting values of these parameters (hopefully the final results w
depend on this choice) and one solves the following set of differential equations

d_  ,0d 0

- % @;M@x,oazx (13
do R
Pk *Zm—Z&mzmet)szo , 14
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where [Vis exactly the same as that appearing in the diffusion equation metho
role of timet is played now byo%2 and the imaginary tima, is the minimization
progress indicator. Equations3j and (L4) are derived, respectively, after setting—(x,)
and & — x,)? for the operator in the expression for the time derivative of the me
value ofA

dd;l;\D: (-[AH - HA+ 2[AOHD) (15
and the mean value defined as
(A= [ Al le. (16)

Bloch Equation

The canonical ensemble of a system with the Hamilton fun¢ticep,) in equilibrium
with an external bath of temperatufehas the phase space normalized distribut

PedXP)
PedXP) = Q'exp FRH(X,p,)] (17)

with B = 1kT andQ(B) = [dx dp, exp (-BH). After differentiating with respect { one
obtains the Bloch equation

0Pe
op = H-Dpeg , g

where[Iistands for the average value calculated with the density distritpyioAfter
integrating over momentuim, one obtains the so called reduced (normalized) dens

PO = Aexp FBV(X)] (19)

and the reduced Bloch equation

9P _ -
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with A(B) = [dx exp (V) and the corresponding change of the definition of the a

age. The Bloch equation describes the evolution of the distribution density of th

nonical ensemble, when the absolute temperature changes (in our caefroto T = 0).
Now, one may introduce a Gaussian Ansatz for the reduced density

P(X0,07) = (2r107) 2 exp FH(x = x)7204] 21

wherex,andag,, depend on the progress indicaorAllowing change of both Gaussia
parameters witl after inserting into the reduced Bloch equation yields the followit
set of differential equations

—GZ% VX, t) D (22)
d0; Oc?
a—B == 1Bjrm/mx t)g . 23

0

Heref is the minimization progress indicator changing fifpmO0 (or,T = ) to 3 = oo (or,
T = 0). Hopefully, afT = 0 one obtaing, corresponding to the global minimum éf

Gibbs Free-Energy Equation

The global minimum of the potential function does not necessarily describe the
stable structure. What counts is not only the depth of the potential energy well, bt
its width. Therefore, the free energy of Gibbs is a more proper function to be
nimized. Recently, Schelstraete and Verschgldsed the Gibbs variational principl
to find the minimum free-energy configuration of a system. The Gibbs free er@rgy
is defined as

F = Min{p}{®} , (29

® = [ dx p(IV(x) + KT [ dx p(x) In p(x) , 25

wherep(x) > 0 is a density distribution of an ensemiidés the Boltzmann constari,
is the temperature and Mip} means a minimum with respect to all possible normaliz
density distributions. The function@ is minimized byp = exp [-BV(X)], but this does not
help finding thex corresponding to the largegt i.e. the lowest value o¥. If p is
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approximated by the normalized Gaussian density with two parameters, the pgsi
and the widtro,, Eq. 1), then the functionad becomes a function of two paramete
only. From the condition

P _
90, = ° 26)

one obtains

o7t = B2roy) Y ax V() { (x — xgloy]? - Vo) exp [-x —x)%203] . (27)

After substitutingo, of Eq. 27) into the functionafP one obtains the so called effectiv
diffusion potential

VEffi(x0,T) = (2n01)‘1’2_|'de(x) exp F(x—xp)%20,] —kT/2 [In (2mo)) +1] , (28)

composed of the energy (first term) and entropy (second term) contributions. The
tional ® at a givenT is obtained from the conditicdVg/ax, = 0. The effective diffu-
sive potentialVET is not a convex function, but is much smoother than the orig
potentialV. To allow for arbitrary starting pointg, ando;, one may think of anothel
strategy in the Gibbs free energy method. After finding that

drF _0Od
WXt 29
dx, ~ Six { )D . (29)
and
OF _ 10d? KT
00, ZWWW t) 20, ' 30

one may introduce the progress indicator 1kT and assure loweringp with respect
to X, and oy, by solving the following set of equations

dxo _ [Od 0
da - @jxwmx,t)% (Y
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00, _ kT 10
da - 20, ZFWQXDD XO. 32

Now, let us comment on some important developments related to the effectiv
fused potential. As shown in r&fthe effective diffused potential is a Gaussian ¢
proximation to some exact effective potential and coincides with the first two terr
a series expansion of this exact effective potential. It has been proved that the pc
is a convexfunction of the mean position (identical xgin the Gaussian approxima
tion). The single minimum of the function corresponds to the exact free energy ¢
system. Since this is also true for= 0, the effective potential 8t = 0 has the only
minimum exactly at the position of the global minimum of a non-degen€r@envex
envelope). This proves that the idea of smoothing leads to the solution of the (
minimum problem. It remains to wait for a progress in calculation of the exact effe
potential for real systems.

Smoluchowski Equation

The Smoluchowski equatiéh®3 related to the Fokker—Planck dynamfcgives the
dynamics of an ensemble of particles (each of mgswith the reduced density dis
tribution p subject to a forc& and the friction constart of a medium in contact with
the bath of temperatufe The equation of motion reads

@ 1 Da ad 0
at - my F(x) + kTO ap - 33

When the Gaussian Ansatz, EQ1), is used, one obtains the following equation
motior?? for the Gaussian position and width

dx 1 [d 0O
ot _W%&wmx’t)%:x (39
b)
ﬂ_— KT- 20, wmxt)g . @35
F
X=Xy

A UNIFYING STRATEGY

In the diffusion equation method of global minimization, the timeneasuring the
Gaussian width, Eq.7f, decreased during the minimization according to the rever:
procedure, and therefore was position independent. That made treatment of the
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and valleys of the potential on equal footing, the maxima disappeared to the sar
extent as valleys. This was an unfavorable behavior for only minima contain infc
tion about the global minimum and the minima valleys were destroyed to a con:
able extent by “melting” the humps. In the methods that were developed late
Gaussian width is position dependent. First Straub and coworkers have’$motine
imaginary time Schrodinger equation method, that the humps disappear much
than valleys do even when tinhdends to infinity (or, the Planck constamtends to
zero). This means that even in the classical limit a kind of a classical tunneling ap
Similarly, Schelstraete and Verscheltleave shown that even far= 0 the effective
diffusive potentialVg(x, T) has humps lowered with respect to thos&.of

One can see that despite of the variety of physical phenomena considered, the
tions of motion for the Gaussian position and width are basically the?$gmgenotes
time minimization progress indicator)

d _  Od 0

do - A@WMX,D%:XO (36)
oo _ . . Od O
afa—c B%?wmx,t)gzx . 37

0

HereA, B, C > 0. In the diffusion equatioB = 0, in the Bloch equatio@ = 0. Interes-
tingly, time andT-! play a similar role. This looks as if nature had a robust recip
handle the global minimum problem by moving a positigef an ensemble from its
starting value to the final position close to the global minimum, when the time go
infinity or the temperature or the Planck constant go zero.

The strategy consists of the following principles:

— At the current positior,, the smoothed potential energihas to be used instea
of the original potential energy. With the Gaussian Ansatz the smoothing is p
formed through an averaging the original potential about the geimith the Gaussian
weights.

— Smoothing is more pronounced for larger smoothing width. The width has a
tion dependent value.

— The current position changes with the progress indicator following the dires
minus gradient ofV[) calculated ak, The rate of this motion is different in variot
methods.

— The current width value decreases, where the curvatuM @xceeds a positive
treshold (close to minima) and increases where it is negative (maxima). This rer
efficiently the barriers between the energy basins. The rate of this motion is
method dependent.
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— When the system is trapped in a flat portion of the potential, the Gaussian
increases with the effect of hunting for distant minima. The hunting effect is prese
the imaginary time Schroodinger equation method, the Smoluchowski dynamic:
the Gibbs free-energy approach. The hunting disappears when the progress in
approaches its final value, which is assured by the Planck constant or tempe
respectively, set to zero.

— The Gaussian Ansatz gives only an approximation to the true density distrik
minimizing the Gibbs free energy. Therefore, when limiting ourselves to a single C
sian at a non-zero temperature, an important ingredient of nature’s recipe eseap
its ability to divide the distribution and populate other energy wells, as required b
exact solutiorp = exp [-BV(X)] of the Gibbs free energy functional.
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preparing the manuscript of the present paper is also acknowledged.
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