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Dedicated to Professor Rudolf Zahradnik on the occasion of his 70th birthday. Many scientists of my
generation owe a lot to Professor Rudolf Zahradnik. For us he is and will remain always an example of
a curious human being, who devoted his life to knowledge and science and who’s scientific achievements
are admired by lots of his followers all over the world. We are also indebted to him for a unique friendly
and scientific climate of our contacts. Last but not least we would like to stress also his exceptional
qualities as a citizen. Thanks to such people as Professor Zahradnik, we in Poland were always sure that
the truth will win in his country. We are really happy that this his and our dream came true.

Smoothing techniques for global optimization in search for the most stable structures (clusters or
conformers) have been a novel possibility for the last decade. The techniques turned out to be related
to a variety of fundamental laws: Fick’s diffusion equation, time-dependent and time-independent
Schrodinger equations, Smoluchowski dynamics equation, Bloch equation of canonical ensemble
evolution with temperature, Gibbs free-energy principle. The progress indicator of global optimiza-
tion in those methods takes different physical meanings: time, imaginary time, Planck constant, or
the inverse absolute temperature. Despite this large spectrum of physical phenomena, the resulting
global optimization procedures have a remarkable common feature. In the case of the Gaussian An-
satz for the wave function or density distribution, the underlying differential equations of motion for
the Gaussian position and width are similar for all these phenomena. In all techniques the smoothed
potential energy function plays a central role rather than the potential energy function itself. The
smoothed potential results from a Gaussian convolution or filtering out high frequency Fourier com-
ponents of the original potential energy function. During the minimization, the Gaussian position
moves according to the negative gradient of the smoothed potential energy function. The Gaussian
width is position dependent through the curvature of the potential energy function, and evolves ac-
cording to the following rule. For sufficiently positive curvatures (close to minima of the smoothed
potential) the width decreases, thus leading to a smoothed potential approaching the original potential
energy function, while for negative curvatures (close to maxima) the width increases leading event-
ually to the disappearance of humps of the original potential energy function. This allows for cross-
ing barriers separating the energy basins. Some methods result in an additional term, which increases
the width, when the potential becomes flat. This may be described as a feature allowing hunting for
distant minima.
Key words: Global optimization; Energy minimum; Stable structure; Fick’s diffusion equation;
Schrodinger equation; Bloch equation; Gibbs free-energy principle.
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Practically any attempt to make a scientific or commercial domain more quantitative
leads to a problem of the optimal solution, e.g. a position or/and value of the absolute
minimum of a function. Generally, finding optimal solution by a method begins by
defining a starting point in the corresponding space of variables. However, this often
creates a problem that one then obtains a locally optimal solution, i.e. only that one,
which is accessible from a particular starting point. Nothing indicates where to search
for the global optimal solutions, i.e. the global minimum of a function. The problem is
not solvable in general. However, one finds important and urgent to reach the globally
optimal or even suboptimal solution in computer science, physics, chemistry, biology,
technology, economics, social sciences, etc. In these cases the problem does not need to
be solved generally. It may be, that the task is solvable only for some useful class of
functions, or (more likely) the methods to be elaborated will assure a significant in-
crease of the success rate even in finding suboptimal solutions.

In chemistry one finds at least two domains where this is of prime importance. First,
is the search for the most stable conformation of a flexible molecule, and second, the
most stable configuration of an ensemble of atoms or molecules. In the last case we
find the problem of the most stable isomer, the most stable products of chemical reac-
tions and the most stable supramolecular structure. In the present state of quantum
chemistry this question is in a large part ignored. How can it be that we are so success-
ful in the application of the quantum chemistry tools to chemical problems? Well, the
answer lies in the fact that molecules most treated so far in quantum chemistry have a
low number of conformers (note, that we always prefer small or rigid molecules for our
computers). Note also, that calculations for a large and flexible molecule are performed
almost exclusively for a particular geometry, most often the X-ray geometry, because
otherwise one is confronted with the difficulty described above.

Is this difficulty serious? Let us take a polypeptide as an example. Approximate
stable conformations of the backbone of a dipeptide (we ignore complication coming
from the side-chain conformations) can be found from the so called Ramachandran
map1, which leads to about 10 different stable backbone conformations. This means,
that a rough estimation of the number of stable conformers of an oligopeptide com-
posed of N + 1 amino acids is of the order of 10N, which is an astronomical number
even for a relatively small molecule as compared to proteins (in the latter case, say, 200
amino acids). An important class of proteins – enzymes function in nature only in a
specific conformation or a set of closely related conformations (native structure).
Therefore, for such a case it is clear, that one has to determine somehow a way to find
those conformations among plethora of others. There are only a few things that help us
in such a formidable task. The first is that apparently it is not necessary to consider the
molecular structure in the atomic representation, and the concept of pseudoatoms, or
even pseudopeptides still preserving reasonable characteristics of the amino acids2,3,
may be used. The second one is that it turns out that for enzymes the energy-hypersur-
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face structure has a hierarchical feature4, i.e. there is a kind of a funnel effect biasing
the search towards the global minimum. The reason for the funnel effect may be that
for those proteins that fold easily to the native structure, the global minimum energy is
considerably lower than that of other conformations5,6, thus facilitating the funnel effect.
Despite these advantages the problem seems to be extremely severe not only for
enzymes, but also for molecules of a quite modest size. Nature however finds somehow
its way to the native conformation, although it has to be admitted that it takes her
seconds or even minutes sometimes, which is a large amount of time.

During the last decade or so a new idea of the global optimization has emerged7,8,
and has been later elaborated in a number of approaches9–27. The key word in these
methods is smoothing or coarse-graining of the original potential energy hypersur-
face28. The deformed hypersurface supports much fewer minima, thus being much sim-
pler and easier to operate during the global minimization.

In the present paper some general aspects of the global minimization will be stressed.
Global minimization and smoothing are closely related to some of basic equations of
physics: Fick’s diffusion equation, time dependent and time independent Schrödinger
equations, Bloch equation of canonical ensemble dependence on temperature, Gibbs
free-energy equation, Smoluchowski dynamics. Some of the main features underlying
the mechanism of this relation may be revealed, when one uses the Gaussian Ansatz,
i.e. when one approximates the ensemble distributions or the wave functions by a single
Gaussian function characterized by a position and a width. For the sake of simplicity all
formulas of the present paper will be written for a one-dimensional potential V. We will
assume that V supports such a large number of minima, that no trivial search for the
global minimum position is likely to be successful.

There is an indication24 that the global optimization schemes that come out from
these equations are all of the same kind as if nature applied a quite robust method to
find the most stable structure. The details of the method change from scheme to
scheme, but the essence seems to remain the same.

FUNDAMENTAL EQUATIONS

Fick’s Diffusion Equation

Let us denote the function to be minimized by V(x), and assume that the function is
given by an appropriate analytical formula. The x domain (usually multidimensional)
may be divided into non-overlapping basins of attraction, each basin associated with a
minimum of V. A basin is an open set of all those points, which when used as starting
points of a steepest-descent minimization procedure, lead to the same minimum (an
attractor). Thus, a basin is the same as a cell in Fukui’s formulation of reaction paths29.
Imagine now that one adds to V(x) its second derivative V′′ multiplied by t/N, with t > 0 and N
a large natural number. This operation rises the new function (with respect to V) for
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those x, for which V′′ > 0, lowers the new function for x with V′′ < 0 and leaves the
value of the function unchanged for x with V′′ = 0. In particular, all minima will be
pushed up, all maxima will be lowered. This operation destabilizes all basins and event-
ually some of the basins may disappear. It has been shown8 that, at a given t, when this
operation is iteratively repeated N times and N → ∞, one gets from V another function,
W(x,t), which for differentiable V reads as

W(x,t) = T(t)V(x) (1)

with the operator T

T(t) = exp 



t 

∂2

∂x2




  . (2)

The operator T has the following eigenfunctions

T(t) sin ωx = a(t,ω) sin ωx (3)

T(t) cos ωx = a(t,ω) cos ωx , (4)

with the eigenvalues a(t,ω)

a(t,ω) = exp (–tω2) . (5)

Let us consider a Fourier decomposition of V. As one can see from Eq. (5), W(x,t = 0) =
V(x). However, as seen from Eqs (4) and (5) for t > 0 the T operator damps all Fourier
amplitudes exponentially with t, and more interestingly this damping is especially pro-
nounced for high frequency components. Thus, the action of T(t > 0) is smoothing or
coarse-graining the original function V, i.e. filtering out high frequency components.
The smoothing is larger for larger t and for larger ω. Admitting even non-continuous V,
one may show8 that the corresponding W satisfies the diffusion equation with the par-
ameter t playing the role of time

∂2W
∂x2  = 

∂W
∂t

  . (6)
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Thus, W changes with t (time) as if it were a concentration or temperature distribution
in a homogeneous body, with the starting distribution at t = 0 equal to V(x).

The function W that satisfies the diffusion equation can be expressed as the Fourier–
Poisson integral, i.e. convolution of V with a Gaussian function

W(x0,t) ≡ 〈V〉(x0,t) = (4πt)–1/2 ∫ dxV(x) exp [−(x − x0)2 /4t]  . (7)

In ref.8 one can find 〈V〉 derived for V being a polynomial, a Gaussian or Lorentz func-
tion as well as the so called standard test functions for global optimization methods.
Note, that as t → 0 the normalized Gaussian function tends to the Dirac delta function
δ(x – x0) and therefore for t = 0,

 〈V〉 = V  . (8)

After substituting x0 → x the function 〈V〉(x,t) = W(x,t) is used in the global minimiza-
tion in the following way (reversing procedure8). First, one chooses a large value of t = tmax

and calculates W(x,tmax). This function (for non-degenerate global minima) will be con-
vex for sufficiently large tmax. By using a steepest descent minimization procedure one
obtains its single minimum starting from any point of space, thus making the procedure
independent of the starting point, which is a remarkable feature. This single minimum
may serve as the starting point for a minimization of the W(x,tmax – δ) with δ very
small. Thus a new minimum is located. This minimum is used then as the starting point
in the minimization of W(x,tmax – 2δ), etc. Finally, one finds a minimum of the function
W(x,0) = V(x). This minimum in many cases8–10,15 is the global minimum of V. In other
words one uses the progress indicator α = t changing from ∞ to 0 and solves the dif-
ferential equation

dx0

dα  = −



d
dx

 〈V〉(x,t)
x = x0

  . (9)

For the reason that will become clear later on, let us write that the change of t
(a quantity related to the Gaussian width) with the progress indicator is trivial in the
diffusion equation method: dt/dα = 1.

Schrodinger Equation

The Schrodinger equation may be used to find the global minimum of a potential en-
ergy function. This can be done in two ways. Both are based on the known property of
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the time-independent Schrodinger equation that the ground-state wave function usually
has its single maximum close to the global minimum of the potential energy14,17,18,30. In
this paragraph we would like to concentrate on the so called imaginary time Schrodinger
equation technique designed by Straub and coworkers20 for finding the global mini-
mum.

One replaces the time variable t in the time dependent Schrodinger equation by τ =
it/h− and then treats τ as a real variable, i.e. as if t were imaginary. The new equation
describes the evolution of a function φ(x,τ = 0), as the time τ tends to infinity

φ(x,τ) = exp (–Hτ) φ(x,0) , (10)

where H is the system Hamiltonian. By expanding the starting function φ(x,0) into a set
of the eigenfunction un of H one has

φ(x,τ) = exp (–E0τ) Σn an un(x) exp [–(En – E0)τ] . (11)

Since En – E0  ≥ 0, for sufficiently large τ the dominant contribution to φ comes from
the ground state, i.e, u0 function corresponding to the energy E0. This function hope-
fully has its maximum close to the global minimum of the potential energy. The idea
behind the method is to start from a localized trial function and then follow its evol-
ution, when τ → ∞. The resulting position of the function will hopefully indicate the
global minimum of V.

Now, one may choose as the wave function a normalized Gaussian function

φ(x,τ) = (2πσ2)−1/4 exp {−[(x − x0)/2σ]2}  , (12)

where the width σ and the position x0 depend on τ and ∫φ*φdx = 1. For τ = 0 one
chooses some starting values of these parameters (hopefully the final results will not
depend on this choice) and one solves the following set of differential equations

dx0

dτ  = −2σ2


d
dx

〈V〉(x,t)
x = x0

(13)

dσ
dτ  = 

h−2

2m
 − 2σ4 





d2

dx2 〈V〉(x,t)


x = x0

  , (14)
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where  〈V〉 is exactly the same as that appearing in the diffusion equation method, the
role of time t is played now by σ2/2 and the imaginary time, τ, is the minimization
progress indicator. Equations (13) and (14) are derived, respectively, after setting (x – x0)
and (x – x0)

2 for the operator A in the expression for the time derivative of the mean
value of A

d〈A〉
dτ  = (−〈AH − HA〉 + 2〈A〉〈H〉) (15)

and the mean value defined as

〈A〉 = 〈φ| A|φ〉/〈φ|φ〉 . (16)

Bloch Equation

The canonical ensemble of a system with the Hamilton function H(x,px) in equilibrium
with an external bath of temperature T has the phase space normalized distribution
ρeq(x,px)

ρeq(x,px) = Q−1exp [−βH(x,px)] (17)

with β = 1/kT and Q(β) = ∫dx dpx exp (–βH). After differentiating with respect to β one
obtains the Bloch equation

∂ρeq

∂β  = −(H − 〈V〉)ρeq  , (18)

where 〈 〉 stands for the average value calculated with the density distribution ρeq. After
integrating over momentum px one obtains the so called reduced (normalized) density

ρ(x) = A−1exp [−βV(x)] (19)

and the reduced Bloch equation

∂ρ
∂β = −(V − 〈V〉)ρ (20)
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with A(β) = ∫dx exp (–βV) and the corresponding change of the definition of the aver-
age. The Bloch equation describes the evolution of the distribution density of the ca-
nonical ensemble, when the absolute temperature changes (in our case from T = ∞ to T = 0).

Now, one may introduce a Gaussian Ansatz for the reduced density

ρ(x0,σ1) = (2πσ1)−1/2 exp [−(x − x0)2/2σ1]  , (21)

where x0 and σ1, depend on the progress indicator β. Allowing change of both Gaussian
parameters with β after inserting ρ into the reduced Bloch equation yields the following
set of differential equations

dx0

dβ  = −σ1
2


d
dx

〈V〉(x,t)
x = x0

(22)

∂σ1

∂β  = −σ1
4


d2

dx2〈V〉(x,t)


x = x0

  . (23)

Here β is the minimization progress indicator changing from β = 0 (or, T = ∞) to β = ∞ (or,
T = 0). Hopefully, at T = 0 one obtains x0 corresponding to the global minimum of V.

Gibbs Free-Energy Equation

The global minimum of the potential function does not necessarily describe the most
stable structure. What counts is not only the depth of the potential energy well, but also
its width. Therefore, the free energy of Gibbs is a more proper function to be mi-
nimized. Recently, Schelstraete and Verschelde31 used the Gibbs variational principle
to find the minimum free-energy configuration of a system. The Gibbs free energy F(T)
is defined as

F = Min {ρ} { Φ} , (24)

Φ = ∫ dx ρ(x)V(x) + kT ∫ dx ρ(x) ln ρ(x)  , (25)

where ρ(x) > 0 is a density distribution of an ensemble, k is the Boltzmann constant, T
is the temperature and Min {ρ} means a minimum with respect to all possible normalized
density distributions. The functional Φ is minimized by ρ ≈ exp [–βV(x)], but this does not
help finding the x corresponding to the largest ρ, i.e. the lowest value of V. If ρ is
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approximated by the normalized Gaussian density with two parameters, the position x0

and the width σ1, Eq. (21), then the functional Φ becomes a function of two parameters
only. From the condition

∂Φ
∂σ1

 = 0 (26)

one obtains

σ1
−1 = β(2πσ1)−1/2∫ dx V(x) {[ (x − x0)/σ1]

2 − 1/σ1} exp [−(x − x0)2/2σ1]  . (27)

After substituting σ1 of Eq. (27) into the functional Φ one obtains the so called effective
diffusion potential

VD
eff(x0,T) = (2πσ1)−1/2 ∫ dx V(x) exp [−(x − x0)2/2σ1] − kT/2 [ln (2πσ1) + 1]  , (28)

composed of the energy (first term) and entropy (second term) contributions. The func-
tional Φ at a given T is obtained from the condition ∂VD

eff/∂x0 = 0. The effective diffu-
sive potential VD

eff is not a convex function, but is much smoother than the original
potential V. To allow for arbitrary starting points x0 and σ1, one may think of another
strategy in the Gibbs free energy method. After finding that

dF
dx0

 = 




d
dx

〈V〉(x,t)
x = x0

(29)

and

∂F
∂σ1

 = 
1
2





d2

dx2〈V〉(x,t)


x = x0

 − 
kT
2σ1

  , (30)

one may introduce the progress indicator α = 1/kT and assure lowering Φ with respect
to x0 and σ1, by solving the following set of equations

dx0

dα  = − 




d
dx

〈V〉(x,t)
x = x0

(31)
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∂σ1

∂α  = 
kT
2σ1

 − 
1
2





d2

dx2〈V〉(x,t)


x = x0

  . (32)

Now, let us comment on some important developments related to the effective dif-
fused potential. As shown in ref.31 the effective diffused potential is a Gaussian ap-
proximation to some exact effective potential and coincides with the first two terms in
a series expansion of this exact effective potential. It has been proved that the potential
is a convex function of the mean position (identical to x0 in the Gaussian approxima-
tion). The single minimum of the function corresponds to the exact free energy of the
system. Since this is also true for T = 0, the effective potential at T = 0 has the only
minimum exactly at the position of the global minimum of a non-degenerate V (convex
envelope). This proves that the idea of smoothing leads to the solution of the global
minimum problem. It remains to wait for a progress in calculation of the exact effective
potential for real systems.

Smoluchowski Equation

The Smoluchowski equation32,33, related to the Fokker–Planck dynamics34, gives the
dynamics of an ensemble of particles (each of mass m) with the reduced density dis-
tribution ρ subject to a force F and the friction constant γ of a medium in contact with
the bath of temperature T. The equation of motion reads

∂ρ
∂t

 = 
1

mγ




∂
∂x




−F(x) + kT 

∂
∂x







ρ  . (33)

When the Gaussian Ansatz, Eq. (21), is used, one obtains the following equation of
motion22 for the Gaussian position and width

dx0

dt
 = − 1

mγ




d
dx

〈V〉(x,t)
x = x0

(34)

∂σ1

∂t
 = 

1
mγ 







2kT − 2σ1 





d2

dx2〈V〉(x,t)



x = x0







  . (35)

A UNIFYING STRATEGY

In the diffusion equation method of global minimization, the time t, measuring the
Gaussian width, Eq. (7), decreased during the minimization according to the reversing
procedure, and therefore was position independent. That made treatment of the humps
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and valleys of the potential on equal footing, i.e. the maxima disappeared to the same
extent as valleys. This was an unfavorable behavior for only minima contain informa-
tion about the global minimum and the minima valleys were destroyed to a consider-
able extent by “melting” the humps. In the methods that were developed later, the
Gaussian width is position dependent. First Straub and coworkers have shown20 in the
imaginary time Schrodinger equation method, that the humps disappear much faster
than valleys do even when time t tends to infinity (or, the Planck constant h− tends to
zero). This means that even in the classical limit a kind of a classical tunneling appears.
Similarly, Schelstraete and Verschelde31 have shown that even for T = 0 the effective
diffusive potential VD

eff(x0,T) has humps lowered with respect to those of V.
One can see that despite of the variety of physical phenomena considered, the equa-

tions of motion for the Gaussian position and width are basically the same24 (α denotes
time minimization progress indicator)

dx0

dα  = −A 




d
dx

〈V〉(x,t)
x = x0

(36)

∂σ
∂α = C − B 





d2

dx2〈V〉(x,t)


x = x0

  . (37)

Here A, B, C > 0. In the diffusion equation B = 0, in the Bloch equation C = 0. Interes-
tingly, time and T–1 play a similar role. This looks as if nature had a robust recipe to
handle the global minimum problem by moving a position x0 of an ensemble from its
starting value to the final position close to the global minimum, when the time goes to
infinity or the temperature or the Planck constant go zero.

The strategy consists of the following principles:
– At the current position x0, the smoothed potential energy 〈V〉 has to be used instead

of the original potential energy V. With the Gaussian Ansatz the smoothing is per-
formed through an averaging the original potential about the point x0 with the Gaussian
weights.

– Smoothing is more pronounced for larger smoothing width. The width has a posi-
tion dependent value.

– The current position changes with the progress indicator following the direction
minus gradient of 〈V〉, calculated at x0. The rate of this motion is different in various
methods.

– The current width value decreases, where the curvature of 〈V〉 exceeds a positive
treshold (close to minima) and increases where it is negative (maxima). This removes
efficiently the barriers between the energy basins. The rate of this motion is also
method dependent.
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– When the system is trapped in a flat portion of the potential, the Gaussian width
increases with the effect of hunting for distant minima. The hunting effect is present in
the imaginary time Schroodinger equation method, the Smoluchowski dynamics and
the Gibbs free-energy approach. The hunting disappears when the progress indicator
approaches its final value, which is assured by the Planck constant or temperature,
respectively, set to zero.

– The Gaussian Ansatz gives only an approximation to the true density distribution
minimizing the Gibbs free energy. Therefore, when limiting ourselves to a single Gaus-
sian at a non-zero temperature, an important ingredient of nature’s recipe escapes, i.e.
its ability to divide the distribution and populate other energy wells, as required by the
exact solution ρ ≈ exp [–βV(x)] of the Gibbs free energy functional.
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as to Prof. H. Verschelde from the University of Gent, Belgium for kindly inviting him for a visit during
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